Erratum to various proofs of Christol’s theorem

نویسنده

  • Joost Winter
چکیده

This note presents an erratum to the proofs of Christol’s theorem found in [Ber02], [AS03], and [BR11].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Function fields in positive characteristic: Expansions and Cobham’s theorem

In the vein of Christol, Kamae, Mendès France and Rauzy, we consider the analogue of a problem of Mahler for rational functions in positive characteristic. To solve this question, we prove an extension of Cobham’s theorem for quasi-automatic functions and use the recent generalization of Christol’s theorem obtained by Kedlaya.  2008 Elsevier Inc. All rights reserved.

متن کامل

Erratum: Nonequilibrium Shear Viscosity Computations with Langevin Dynamics

This short note is an erratum to the article [R. Joubaud and G. Stoltz, Nonequilibrium shear viscosity computations with Langevin dynamics, Multiscale Model. Sim., 10 (2012), pp. 191–216]. We present required modifications in the proofs of Theorem 2 and 3.

متن کامل

Algebraic Generalized Power Series and Automata

A theorem of Christol states that a power series over a finite field is algebraic over the polynomial ring if and only if its coefficients can be generated by a finite automaton. Using Christol’s result, we prove that the same assertion holds for generalized power series (whose index sets may be arbitrary well-ordered sets of nonnegative rationals).

متن کامل

Erratum To: Extension of Symmetries on Einstein Manifolds with Boundary

In this note, we point out and correct an error in the proof of Theorem 1.1 in [1]. All of the main results of [1] are correct as stated but the proofs require modification. We use below the same notation as in [1]. ∂M (δ * Y)(N, X) = 0, cannot always be simultaneously enforced with the slice property [1, (5.7)], i.e.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015